
Rough invariant waves 
 

Mathematicians are often interested in making quantitative predictions about particular phenomena, and the 

mathematical field of analysis concerns itself with those phenomena that involve movement or change of 

some sort. A concrete example of this is a form of change that everyone will recognize: dropping an object 

into a still pool of water. Waves will emanate from where the object hits the water, and the pool will 

change as the waves progress. Eventually the waves will reach the edge of the pool and reflect back, and it 

is easy to make quantitative predictions about the trajectory of the waves if the pool is still and its edges are 

smooth. But what happens when the pool has very many rough edges and corners? One can visualize the 

chaos that might ensue: waves will reflect off the edges in unexpected ways, subsequently bouncing off 

each other as well, until it becomes difficult to discern any meaningful structure in the water. 

 

The project is concerned with determining, in a quantitative sense, how rough a pool of water needs to be 

before it becomes difficult to predict the behavior of waves in that pool. In fact, the project is not only 

concerned with water waves, it aims to study the behavior of a variety of waves: electromagnetic, sound, 

radio, even gravitational waves; anything that can be described by what mathematicians call a wave 

equation. Such equations are satisfied by all the waves that we know from everyday life, and they capture 

the essential behavior of real-life waves while leaving out the details that only obfuscate the underlying 

patterns.  

 

More precisely, mathematicians can quantify how smooth a surface is by assigning a number to it. A 

smooth surface such as a circle will have a very high smoothness number, whereas a surface with lots of 

rough edges and corners will have a small smoothness number. If the surface is particularly fractal and 

chaotic, it may even have smoothness number zero. A natural question is then: what is the critical 

smoothness number below which the behavior of waves on that surface fundamentally changes and it 

becomes more difficult to make quantitative predictions? This will typically depend on the specific type of 

behavior under consideration, although for many problems the critical smoothness number has turned out 

to be two. Recently, in collaboration with others, the principal investigator has shown that for a specific 

type of wave behavior called Lp-regularity, the critical smoothness number is no larger than two. This 

means that, on any surface that has smoothness number at least two, one can make the same quantitative 

predictions about waves that are possible on smooth surfaces without edges or corners. 

 

This project aims to consider the natural follow-up question: for Lp-regularity, is the critical smoothness 

number two, or is it smaller than two? And if the smoothness number is in fact two, is it then perhaps still 

possible to make some predictions about waves on very rough surfaces, even if these predictions are not as 

powerful as for surfaces with smoothness number larger than two? 

 

These questions are important for our understanding of nature and the world around us, since answers to 

such questions apply to many types of waves on many types of surfaces, using only as input the wave 

equation and the smoothness number of the surface.  

 

It is expected that the project will determine the critical smoothness number for Lp-regularity, and that it 

will also lead to a better understanding of waves on surfaces with smoothness number below the critical 

value. 
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